FCF Combustion Requirements Compliance for Basis Experiments (SRED) and Real Experiments Nora Bozzolo and Roger Helmick February 15, 2001 ### Summary Compliance Summary for Combustion Basis Experiments and Real Experiments ### **Droplet Combustion Experiment (c6) – DCE II** #### **Real Experiment Science Summary** - PI: Williams of UC San Diego - PS: Nayagam-NCMR@ GRC #### **Experiment Summary** - Single, liquid methanol/water droplets burn in quiescent O2/N2/He environments, freely deployed and with fiber support - Droplet size, flame location, flame radiation are measured - Burning rate constants, flame to droplet diameter ratios, key burning zone species concentrations, droplet extinction diameter, and broad band and water band radiation variations are found - Chamber Insert Apparatus provides fuel, igniter assembly, droplet growth and deployment system, color camera and radiometers - Atmosphere is .5 to 3 atm with O2/N2/He mixtures provided by the FOMA. Cleanup is every 4 test points and before venting - Diagnostics provided by CIR: - Flame images of OH and CH - Back lit droplet images at high frame rate and high resolution - Color images of droplet operations and ignition provided by MDCA - Acceleration environment .6 to 60 x 10-5 g/go provided by ARIS ### **Droplet Combustion Experiment (c6) – DCE II** - Continuation of DCE which flew on the Microgravity Science Lab in 1997 - MSL configuration: 6 Middeck Locker Equivalent + stowage - DCE - Heptane in O2- He atmosphere - 35mm Film@80 fps & UV intensified (OH) on video - DCE-2 - Methanol/Water in O2- He-N2 atm - Digital imaging & UV intensified (OH, CH) on video **Droplet Image from MSL** ### **Droplet Combustion Experiment (c6) – DCE II** **Proposed Experiment Layout in CIR** ### Summary of CIR/DCE II Compliance With DCE II SRD/Derived Requirements | System | Key Requirement | CIR H/W | DCE H/W | Other | Compliance | |---------------------------------|--|---------------------|-------------------------------|--------------------|---------------------| | Test Chamber | nsert size: 62.7cm long x 36.9 cm dia | Chamber | insert | | comply | | rest Chamber | 18 to 29C test environment .25 to 3 atm initial pressure | " | | Water loop | " | | Test Gas Conditions | O2 mole fraction 1% +/- 0005 of desired | FOMA/ gas bottle | s initial bottle gas mixtures | | Ш | | | water vapor <2% | FOMA filter | | | 11 | | | O2 levels to 40 % | FOMA/ gas bottles | initial bottle gas mixtures | | II | | | He levels to 40%, rest N2 | FOMA/ gas bottles | initial bottle gas mixtures | | 11 | | Acceleration Environment | need levels ~10⁻⁵ go | | | ARIS | II | | | need measurement accuracy 10-6 go | | | SAMS FF | " | | | need frea mesurement 0-125 Hz | | | SAMS FF | II . | | Minimum # Test Pts | 80 pts in 4 months | CIR ops | DCE Ops | ISS Crew time/down | k " | | Droplet Imager | 80 fps at 1cm fov, 20 um resolution | HFR/HR | | | II . | | | 80 fps at 3 cm fov, 60 um resolutio | n HiBMs | | | " | | | 3 cm depth of field | either camera | | | 11 | | Secondary Imager | 30 fps | | Color Camera | | 11 | | | 4 cm fov | | " | | 11 | | | 4 cm dof | | " | | II | | | std video resolution | | " | | " | | CH & OH Imagers (2) | 431 & 310 nmbandpass filters | LLL (2) & OH filte | CH filter | | 11 | | | 30 fps | II | | | II | | | 90 um resolution | " | | | II . | | | 5 cm fov | II | | | " | | | 4 cm dof | " | | | " | | | colinear views for cameras | bench configuration | | | " | | Data Requirements | all data time synched to .03 sec | IOP | | | " | | Avionics | space for control & ops of CIA devic | es Optics bench | avionics box | | physical space need | Summary: DCE II interface requirements with CIR are capable of being met by the CIR design. ### **Droplet Combustion Experiment (c6) – DCE II** **Critical Hardware Summary** | FCF Provided | PI Provided | |--|--| | HFR/HR * or HiBMs w/50mm FOV Relay * LLL-UV w/ 42mm FOV objective & 310nm filter * LLL-IR w/45-90mm objective * Illumination 3 Common IPSUs * 1 IPP * 4 Sapphire Windows & 4 Blanks Pressure Measurements SAMS FCU * 1-3" Adsorber Cartridge 1-1L 50% and 3-2.25L 50% O2Bottles 1-1L 100% Helium 1,204 liters ISS N2 Chamber temperature measurements Atmospheric Mixing & Delivery | PI Avionics Box * CIA Radiometer Ignition System Color Camera Liquid Fuel & Dispensing Mech. | ### **Droplet Combustion Experiment (c6) – DCE II** **Operation Power Profile** Represents worst case profile #### **Assumptions:** - 1354.7 GB data generated by experiment (3.81 GB per test point) - 364 test points per experiment (60 seconds data recording per test point) - Downlink data rate from IOP to TSC of 0.596 MB/s. - Data downlink provided after 4 test points, clean after 4 successive test points - PI Avionics Power 75 W, PI CIA Power 260 W Peak Power = 2055.4 W PI Peak = 1213 W Facility Peak = 756 W Peak Duration = 5 min. Average Power = 698 W Total Energy = 476.7 kW-h & ### Droplet Combustion Experiment (c6) – DCE II ECS Load Profile ### Droplet Combustion Experiment (c6) – DCE II Mass and Stowage Estimates | | Operating
Base Mass
[kg] | | Up Mass
[kg] | Stowage
Volume
[m³] | |----|--------------------------------|-------------------------------------|-----------------|---------------------------| | | | Total PI Provided | 107.89 | 0.1849 | | | | CIA | 45.70 | 0.0941 | | | | PIAvionics | 19.80 | 0.0220 | | | | 2 - 1.0 L Bottle | 8.00 | 0.0080 | | c6 | 1021.50 | 3 - 2.25 L Bottles | 20.13 | 0.0180 | | Co | 1021.50 | 2 Spare Deployment Needles Assembly | 0.08 | 0.0003 | | | | 1- Igniter Tip Assembly | 0.0006 | 0.000002 | | | | 11 Fuel Reservoirs | 8.50 | 0.0114 | | | | 1 Retractable Indexing Fiber | 0.98 | 0.0308 | | | | 1 Adsorber Filter | 4.7 | 0.0002325 | ### **Droplet Combustion Experiment (c6) – DCE II** **Experiment Crew Time Estimates** ### **Droplet Combustion Experiment (c6) – DCE II** ### **Summary** - A total of 364 test points - 160 test points for set # 1 - 60 test points for set # 2 - 144 test points for set # 3 - CIA contains color camera with signal routed to Common IPSU via MDCA Avionics - ECS loads within CIR capability - Experiment requirements are within the Facility resource allocations - Data: 1354.7 GB - Power: 698 Watts (average); 2055 Watts (peak) - Energy: 476.7 kW-h - Mass: 1021.5 kg - Crew Time: 28.8 hrs (includes rack shutdown with ARIS lockdown procedure) - Total Experiment Operational Run Time for 364 test points: 46 days FCF (CIR + PI Hardware) complies with all requirements ### **Turbulent Gas Jet Diffusion Flames (c1)** #### **Real Experiment Science Summary** PI: Bahadori PS: Stocker, GRC #### **Experiment Summary** - Propane gas jet diffusion flames burn that are physically disturbed near the base of the flame - Flame size and flame location in response to imposed disturbances are measured - Chamber insert provides fuel, igniter assembly, temperature point measurement devices and flame disturbance mechanism - Atmosphere is 1 atm with O2/N2 mixtures provided by the FOMA. O2 concentration 22%. - Diagnostics provided by CIR: - Two orthogonal views of the flame. One color - Chemical composition of the burned gas samples - Acceleration environment range 10-3 to 10-5 g/go provided by ARIS **Diagnostics Layout in CIR** ### Summary of CIR/TGDF Compliance With TGDF SRD/Derived Requirements | System | Key Requirement | CIR H/W | TGDF H/W | Other | Compliance | |---------------------------|---|---|--|----------------------|---| | Test Chamber | Insert size: 28.7cm long x 34.2 cm dia interior wall emissivity >.9 over visable initial press 1 atm, final to 2.5 atm @ 48 l. | Chamber
Test chamber | insert | | comply
" | | Test Gas Conditions | O2 mole fract acc .3% of desired O2 mole fraction 22% N2 mole fraction 78% post burn analysis: CO,CO2,O2 propane to 5%; NO,NO2, N2 to 10% | FOMA gas bottles FOMA gas bottles FOMAgas bottles Gas Chromo. Gas Chromo. | intial bottle gas mixtures
intial bottle gas mixtures
intial bottle gas mixtures | | " " " " " | | gaseous fuel flow | flow rate of 1.86 + .04 cc/s | | | | II . | | Acceleration Environment | need levels ~10-4 go
need freq mesurement 0-15 Hz | | | ARIS
SAMS FF | 11 | | Minimum # Test Pts | 32 pts | CIR ops | TGDF Ops | ISS Crew time/downlk | Ш | | Test Duration Estimate | 500 sec | Test chamber | | | п | | flame disturbance imaging | 30 fps
18 x 8 cm fov
5 cm dof
resolution: 500 - 1000 um | Color Cam " " " | | | " " " | | low light level imaging | 30 fps
18 x 8 cm fov
5 cm dof
resolution: 500 - 1000 um | HiBMS
"
" | | | " | | | orthogonal view to color camera | " | CIA arrangement | | п | Summary: TGDF interface requirements with CIR are capable of being met by the CIR design. ### Structure of Flame Balls at Low Lewis #s (c2) #### **Real Experiment Science Summary** PI: Ronney, USC PS: Weiland, GRC #### **Experiment Summary** - Study flame balls that exist in a spark ignited, premixed quiescent environment - Flame shape, size and structure, length of burn time, temperature, flame radiation and amount of fuel and O2 consumed are found - Chamber insert provides ignition mechanism, radiometric detection and point temperature measurements - Fuel/oxidizer/diluent mixtures provided by FOMA - Operating pressure is 1 or 3 atm - Diagnostics provided by CIR: - Three flame views: One provides long pass wavelength detection orthogonal to OH imaging. Third view is color. - Species composition via GC - Acceleration environment range 10-5 to 0.05 g/go is provided by ARIS **Diagnostics Layout in CIR** ### Summary of CIR/SOFBALL Compliance With SOFBALL SRD/Derived Requirements | System | Key Requirement | CIR H/W | Sofball H/W | Other | Compliance | |--------------------------|---|--|--|----------------------|-------------------------------| | Test Chamber | Insert size: 62.2 cm long x 39.6 cm dia interior wall emissivity >.9 over visible initial press 1-3 atm, accuracy 3% of reading | Chamber
Test chamber | insert | | comply
"
" | | Test Gas Conditions | mole fract acc 2% of desired for each component O2 mole fraction range 8-20%, H2 3.35 - 7.67% other gases are CO2, N2, SF6 toxic/corrosive gas (HF, SO2) cleanup required | FOMA gas bottles
FOMA gas bottles
FOMA gas bottles
FOMA filters | intial bottle gas mixtures
intial bottle gas mixtures
intial bottle gas mixtures | | 11
11
11 | | Post burn analysis | looking for: H2,O2,CO2,H2O, SF6, N2
& CO to 2% | Gas Chromo.
Gas Chromo. | | | 11 | | Acceleration Environment | need levels 10-4 g/go
needs long (~500 sec) micro-g | | | ARIS
ISS planning | 11 | | Test Chamber | interior wall emmissitivity >.9 over visable initial press 1-3 atm, accuracy 3% of reading | Test chamber | | | 11 | | Minimum # Test Pts | 30 pts | CIR ops | Sofball Ops | ISS Crew time/downlk | II | | Test Duration Estimate | 100-500 sec | Test chamber | | | II | | Color camera | 30 fps
30 x 22.5 fov
30 cm dof
2200 um resolution | Color Cam
"
" | | | comply
" | | LLL cameras -IR(2) | 30 fps 30 x 22.5 fov 30 cm dof 800 nm long pass filter for 1 Cam orthogonal view to color camera | near IR LLL pkge " " " " | filter
CIA arrangement | | comply " " | | LLL camera -UV | 30 fps
30 x 22.5 fov
30 cm dof
wavelength: 310 nm | LLL-UV pkge
"
"
•" | | | " " CIR lens dof limit comply | ### **Spread Across Liquids (c3)** #### **Real Experiment Science Summary** - PI: Dr. Howard Ross, GRC - PS: Jack Salzman, GRC - Being Flown in a Sounding Rocket #### **Experiment Summary** - Liquid Fuel fills a rectangular channel and is ignited at one end. - Flame images, liquid- and gas-phase velocity measurements and flow visualization are acquired. #### **Diagnostics Layout in CIR** - Chamber insert would provide fuel tray and liquid fuel filling mechanism. - Tests are usually conducted with air flow across the fuel surface. - Diagnostics provided by CIR: - High Bit-depth Multi-spectral camera. - Low Light Level Infra-Red camera - Acceleration environment range < 5x10-4 g/go provided by ARIS ### Summary CIR/SAL Compliance With SAL SRD/Derived Requirements | System | Key Requirement | CIR H/W | SAL H/W | Other | Compliance | |--------------------------|---|---------------------------|-------------------------|----------------------|-----------------| | Test Section Dimension | 30cm length x 2.5cm height x 2 or 8 cm width | Chamber | Chamber insert | | comply | | Fuels & fuel condition | Butanol, Propanol, Ethanol, Methanol,
Decane
60 - 600 cc of fuel required | | SAL Fuel bottles | | May not comply | | Gas flow across fuel | 5 cm/s - 30 cm/s +/- 10%
Initial pressure 1 atm | FOMA System | SAL Flow tunnel | | comply | | Acceleration Environment | need levels 5x10-4 go
need freq measurement 0-10 Hz | | | ARIS
SAMS FF | 11 | | Minimum # Test Pts | TBD | CIR ops | Cool Flames Ops | ISS Crew time/downlk | п | | Test Duration Estimate | < 60 sec. | Test chamber | | | " | | 2 Visible Imaging | 30 fps
30 cm x 5 cm fov | Color Camera
& LLL-,IR | LLL-IR camera objective | | ::
11 | | IR Imaging | 30 fps
30 cm x 7.5 cm fov | | Long IR Camera | | п | | Temp. Field Measurement | Rainbow Schlieren: 30 fps
0.2mm resol; 10cm dia. FOV | Illumination +
HiBMs | Objectives | | "May not comply | Summary: There are safety concerns with using the quantities of liquid fuels required. Also accommodating PIV measurements and Rainbow Schlieren are a challenge. ### Flammability Diagrams of Combustible Material (c4) #### **Real Experiment Science Summary** - PI Fernandez-Pello, UC Berkeley - PS Ross GRC #### **Experiment Summary** - Study ignition and flame spread of solid samples with external radiant heat flux and opposed gas flow - Ignition time, flame spread, flame size measurements as a function of external radiant flux, flow velocity and oxygen concentration - Chamber insert provides fuel, igniter assembly, radiant heater and flow duct - Operating pressure is 1 atm with O2/N2 mixtures provided by the FOMA. O2 concentration range from 18 to 25%. Recirculation mechanism is PI provided - Diagnostics provided by CIR: - Color images of flame spread - Infrared Image of fuel surface - Acceleration environment 5x10-5 g/go provided by ARIS **Diagnostics Layout in CIR** **CIR/FIST Chamber Insert Apparatus** ### Summary of CIR/FIST Compliance With FIST SRD/Derived Requirements | System | Key Requirement | CIR H/W | FIST H/W | Other | Compliance | |-----------------------------|--|----------------------------------|----------------------------|------------------|--| | Test Chamber | Insert size: 39.1 cm long x 12.5 cm dia
initial press 1 atmr2 atm | Chamber
Test chamber | insert | | comply
" | | Test Gas Conditions | O2 mole fract acc .5% | FOMA system | initial bottle gas mixture | S | May Comply | | | O2 mole fraction range: 18- 25%, rest N2
< 10% relative humidity | FOMA gas bottles
FOMA filters | initial bottle gas mixture | S | On-going testing on O2 bleed-in system | | Flow duct conditions | 30 cm long x 10cm x 10cm
0-20 cm/sec over sample | | Flow duct with fans | | 11
11 | | Radiant sample heating | 40 - 200 watts radiant power to surface | 1KW @ 120V | | | comply | | Acceleration Environmen | t need levels 5 x 10-5 g/go
need freg measurement 0-10 Hz | | | ARIS
SAMS FF | comply
" | | # Test Pts
Test duration | 32 pts + 16 desired ~ 200-1000 sec | CIR ops | FIST Ops | Crew time/downlk | 11 | | Color camera (2) | 30 fps | Color Cam | | | comply | | | 10 x 4 cm fov | 11 | | | II | | | 5 cm dof
standard video | " " | | | II
II | | IR Imaging camera | 30 fps | Mid-IR cam | | | п | | | 10 x 4 cm fov | " | | | п | | | 5 cm dof | " | | | п | | | resolution: 1000 um | " | | | н | | | orthogonal view to color camera | II . | CIA arrangement | | н | Summary: FIST interface requirements with CIR will be met after successful bleed-in testing. ### Microgravity Smoldering Combustion Experiment (c5) #### **Real Experiment Science Summary** PI: Fernandez-Pello, UC PS: Urban, GRC #### **Experiment Summary** - A porous combustible sample of polyurethane foam is heated to ignition by an igniter wire under opposed or concurrent flow, or in a quiescent environment - Smoldering combustion front is monitored and temperature measurements are taken - Chamber insert provides fuel, sample holder, igniter assembly, and temperature point measurement. - Operating pressure 1 atm with O2/N2 mixtures ranging from 21 to 40% and oxidizer flow from 0.3 to 7 mm/s provided by the FOMA. - Diagnostics provided by CIR: - Illumination of the smoldering region - One color image of combustion event throughout it duration. - Composition of O2, CO, CO2, N2 and CH4 via GC - Acceleration environment <10-3 g/go provided by ARIS **Diagnostics Layout in CIR** **CIR/MSC Chamber Insert Apparatus** ### Summary of CIR/MSC Compliance With MSC SRD/Derived Requirements | System | Key Requirement | CIR H/W | MSC H/W | Other | Compliance | |-----------------------------|---|--------------------|---|----------------------|------------------------------------| | Test Chamber | Insert size: 59.5 cm long x 38.1 cm dia
1atm + 10%initial pressure | Chamber
Chamber | insert | | comply | | Test Gas Conditions | O2 mole fraction .5% of desired relative humidity <10% | FOMA filter | initial bottle gas mixture | | #
| | | O2 levels to 21-40 %
He levels to 40%, rest N2 | FOMA/ gas bottles | initial bottle gas mixture initial bottle gas mixture | | " | | Post burn analysis | looking for: CH4,CO,CO2,O2,H2O, & N | 2 Gas Chromo. | | | comply | | Ultrasound imaging | 5 locations in sample every 10 sec | | ultrasound system | | acoustic signature limits for rack | | Oxidizer flow | .2 - 4.7 std liters/min | FOMA | | | flows below CIR FOMA limit | | Acceleration Environment | need levels ~10-3 g/go | | | ARIS | comply | | # Test Pts
Test Duration | 12 pts
50-120 minutes | CIR ops | MSC | ISS Crew time/downll | 11
11 | | Color camera | .2 fps
12 x 10 cm fov | Color Camera | | | n
n | | | resolution:~5000 um | " | | | " | Summary: MSC interface requirements with CIR are capable of being met by the CIR design. ### Laminar Soot Processes Experiment (c7) #### **Real Experiment Science Summary** PI: Faeth, U of Mich PS: Urban, GRC #### **Experiment Summary** - A round laminar gas jet diffusion flame of ethylene or propane burns in an initially quiescent environment color - Soot volume fraction, soot temperature, flame radiation are measured. Soot samples are taken - Flame shape and size, soot morphology, and smoke heights are found - Chamber insert provides fuel, igniter assembly, temperature point measurement and flame radiation devices and soot sampler. - Operating pressures are 0.5 and 1 atm with O2/N2 mixtures provided by the FOMA. O2 concentration 21%. - Diagnostics provided by CIR: - Two orthogonal views of the flame: One color, another LLL is available for a second desired view. - Light absorption and 2-wavelength pyrometry images for soot volume fraction and soot temperature measurements - Acceleration environment 10-4 g/go provided by ARIS **Diagnostics Layout in CIR** **CIR/LSP Chamber Insert Apparatus** ### Summary of CIR/LSP Compliance With LSP SRD/Derived Requirements | System | Key Requirement | CIR H/W | LSP H/W | Other | Compliance | |--|--|--|--|----------------------|---| | Test Chamber | Insert size: 66.6 cm long x 39.6 cm dia interior wall emissivity >.8 over visible initial press .5&1 atm.final< 5%rise | Chamber
Test chamber | insert | | comply
"
" | | Test Gas Conditions | O2 mole fract acc 1% of desired O2 mole fraction 21% N2 mole fraction 78% max of 10% O2 consumed in test | FOMA gas bottles
FOMA gas bottles
FOMAgas bottles
Gas Chromo. | intial bottle gas mixtures intial bottle gas mixtures intial bottle gas mixtures | | 11
11
11 | | gaseous fuel flow | flow rate .7 - 1.93 mg/s | FOMA supply | inert nozzle | | 11 | | Soot sampling probes | TEM grids at 4 locations
transit time <50 msec
residence time 200-500 sec | air for insert solenoids | grids, probes
solenoids
" | | chamber internal tap for air
comply
" | | Acceleration Environment | need levels <10-3 g/ go
need freq measurement 0-15 Hz | | | ARIS
SAMS FF | 11 | | Minimum # Test Pts
Test Duration Estimate | 14 pts
< 250 sec | CIR ops
Test chamber | LSP Ops | ISS Crew time/downlk | n
n | | Color camera for flame imaging | 1 fps
8 x 6 cm fov
2.5 cm dof
resolution 750 um | Color Cam
"
" | | | 11
11
11 | | soot volume fraction camera | wavelength: 600-900 um (675 um)
resolution: 1000 nm
3 cm fov full field | HiBMs w/ filter
"
" | | | 11
11 | | 2 wavelength pyrometry | 632.8 & 900 nm
resolution 500um
3 cm fov full field
range: 800 to 1100 K | HiBMs w/ liquid filter " " " | | | 11
11
11 | Summary: LSP interface requirements with CIR are capable of being met by the CIR design. ### Sooting & Radiative Effects In Droplet Combustion (c8) #### **Real Experiment Science Summary** PI: Choi, Drexel University PS: Ferkul NCMR @ GRC #### **Experiment Summary** - single liquid heptane or methanol droplets burn in quiescent O2/N2/He environments, freely deployed and with fiber support - droplet size, flame location, soot concentration, temperature distributions, and soot morphology are measured - burning rate constants, flame to droplet diameter ratios, soot properties and flame extinction will be obtained ### **Key CIR - Experiment Interface Requirements** - Chamber insert provides fuel, igniter assembly, droplet growth and deployment system and soot sampling - Atmosphere is .25 to 2 atm with O2/N2 & O2/He mixtures provided by the FOMA. O2 concentration range from 15 to 50%. Cleanup is between test points as necessary and before venting - Diagnostics provided by CIR: - Back lit droplet images at high frame rate and high resolution - Soot Volume Fraction and 2-wavelength pyrometry images - OH flame emission images - Color images of droplet operations and ignition provided by MDCA - Acceleration environment 10-6 g/go provided by ARIS #### **Diagnostics Layout in CIR** **CIR/SEDC Chamber Insert Apparatus** ### Summary of CIR/SEDC Compliance With SEDC SRD/Derived Requirements | System | Key Requirement | CIR H/W | SEDC H/W | Other | Compliance | |--|---|----------------------------|--|------------------------|---| | Test Chamber | Insert size: 64 cm long x 34.5 cm d | a Chamber | insert | | comply | | | 18 to 27 oC test environment .5 to 2 atm initial pressure | Chamber
Chamber | | Water loop;Air cooling | n
n | | Test Gas Conditions | O2 mole fraction 1% of desired
O2 levels to 50 % | _ | initial bottle gas mixture
initial bottle gas mixture | | 11
11 | | Acceleration Environment | need levels ~10-5 go
need measurement accuracy 10-6 | jo | | ARIS
SAMS FF | " | | Droplet Imager | 80 fps
20 um resolution @ 10x10mm IFOV
60 um resolution @ 30x30mm IFOV | | | | 11
11 | | Color imager of flame | >/= 30 fps
- | | Color Camera | | п | | OH flame imager | 310+5 nm acceptance
30 fps
50 um resolution
5 cm diam. fov | LLL w/ OH Filter
"
" | | | comply
"
" | | 2 wavelength pyrometry
& soot volume fraction
camera | 700 & 800 nm/ 675 nm 30 fps resolution 50 um 5 cm diam. fov range: 1000 to 2500 K, acc 50 K > 250 gray scales | HiBMs w/ liquid filte |)r | | currently 100ms needed for filter cycling approx. 5fps can be supported depending on exposure. 30 fps available at each wavelength : " | Summary: SEDC interface requirements with CIR are capable of being met by the CIR design. ### Cool Flames (c9) #### **Real Experiment Science Summary** - PI: Prof. Howard Pearlman, USC - PS: Dr. Ming-Shin Wu, NCMR - Currently in Phase B #### **Experiment Summary** - Premixed gases are introduced to a heated (200-6000C) quartz vessel - Reaction is observed through windows in the containment vessel which jackets the quartz vessel. - Chamber insert provides quartz vessel, fluid system interfaces to CIR, temperature and pressure point measurement devices. - CIR chamber will be evacuated prior to and during the experiment operations. - Diagnostics provided by CIR: - Low Light Level Ultra-Violet camera. - Low Light Level Infra-Red camera - Acceleration environment range < 3x10-5 g/go provided by ARIS **Diagnostics Layout in CIR** CIR/Cool Flames Chamber Insert Apparatus ### Summary CIR/Cool Flames Compliance With Cool Flames SRD/Derived Requirements | System | Key Requirement | CIR H/W | Cool Flames H/W | Other | Compliance | |--------------------------|--|--------------------------------------|---|----------------------|--| | Test Chamber | Vessel size >or = to 20 cm. Internal dia.
Initial vessel Temp 200-600°C | Chamber | Vessel & Vessel heater | | comply | | Test Gas Conditions | Mixtures of 50%propane/50% O2 required Mixtures of H2 & O2 desired Required inerts He, Ar, Kr Uniformity +/- 0.1% by volume Accuracy is +/- 0.5% by volume | FOMA gas bottles
FOMA gas bottles | intial bottle gas mixtures intial bottle gas mixtures | | May not comply Comply " " " | | Operating Pressure | 100 to 1300 Torr
Initial pressure 10 mTorr or below | Vacuum Exhaust | | | 11 | | Acceleration Environment | need levels 3x10-5 go
need freq measurement 0-50 Hz | | | ARIS
SAMS FF | 11 | | Minimum # Test Pts | 50 pts | CIR ops | Cool Flames Ops | ISS Crew time/downlk | II | | Test Duration Estimate | Minutes up to 2 hrs. | Test chamber | | | 11 | | Low light level imaging | 30 fps & 100 fps
20 cm dia. fov
3 cm dof
Spatial resolution: >/= 2 pixels/mm | LLL-UV & IR
"
" | | | 100 fps impacts
10% of test matrix
Comply | | Chemical Composition | Desired Species: C3H8, O2, CO,
CO2, C2H4, CH3CHO, CH3OH,
C3H6, C3H6O, C2H5CO, H2, H2O,
H2O2 | Gas Chromatograph " " " " | Sample Probes | | Issues with sampling and Measuring some of these species | Summary: There are safety concerns with using the premixed gasses with the FOMA system that need to be resolved. A different camera may be used to accommodate the 100 fps requirement. ### Solid Inflammability Boundary At Low Speed (c10) #### **Real Experiment Science Summary** - PI: T'ien, Case-Western - PS Ferkul, NCMR @ GRC #### **Experiment Summary** - Verify predicted extinction boundaries in concurrent flame spread across a thin solid fuel. - Flame spread, flame size and shape, temperature, heat release measurements are made at a series of gas flow velocities and oxygen concentrations. - Chamber insert provides fuel, igniter assembly, temperature point and radiometric measurement devices - Operating pressure is 1 atm with O2/N2 mixtures provided by the FOMA. O2 concentration between 10% and 30%. - Diagnostics provided by CIR: - One color, one CH and one OH view of the flame. - Infrared imaging of CO2, H2O and soot fields - Chemical composition of the burned gas samples - Oxidizer flow from 0 to 15cm/s can be partially provided by FOMA - Acceleration environment range 10-4 g/go provided by ARIS **CIR/SIBAL Chamber Insert Apparatus** ### Summary of CIR/SIBAL Compliance With SIBAL SRD/Derived Requirements | System | Key Requirement | CIR H/W | SIBAL H/W | Other | Compliance | |--|---|---|--|-----------------|--| | Test Chamber | Insert size: 78.3 cm long x 38.1 cm dia initial press 1 atm .05 atm | Chamber
Test chamber | insert | | comply | | Test Gas Conditions | O2 mole fract acc 1% O2 mole fraction range: 10- 30%, rest N2 < 50% relative humidity | FOMA system FOMA gas bottles FOMA filters | initial bottle gas mixtures | | comply
"
" | | Flow duct conditions | 30 cm long x 10cm x 10cm | Chamber re-
circulation to igniti | Flow duct w/fans
on | | May Comply-On going bleed in method being tested | | Acceleration
Environment | need levels 5 x 10-5 g/go
need freg mesurement 0-10 Hz | | | ARIS
SAMS FF | comply
" | | Minimum # Test Pts | 60 pts | CIR ops | SIBAL Ops | Crew time/down | K " | | Test duration | 300 seconds | | | | CIR FOMA supply flow time | | Flame imaging | 30 fps
10 x 10 cm fov
resolution: 200 um | Color Camera
" | | | comply
"
" | | CH flame zone
edge image | wavelength 431 nm (CH) >10 fps 10 x 10 cm fov resolution: 200 um | LLL-IR
"
" | CH filter | | 11
11
11 | | IR flame zone & fuel surface measurement camer | Flame wavelengths:4.3(CO2),1.87(H2O),1.6,&3.8u >1 fps a 10 x 10 cm fov resolution: 200 um | n Mid-IR pkge
"
" | multielement filter wheel & insert mirror assembly | | comply camera sensitivity @1.6 & 1.87μm must be tested " | | OH flame imager | wavelength 310 nm (OH) >1 fps 10 x 10 cm fov resolution: 200 um | LLL-UV w/OH filte | | | comply
"
" | Summary: SIBAL interface requirements with CIR will be met after successful bleed-in testing. ### Transition From Ignition to Growth Under External Radiation (c11) #### **Real Experiment Science Summary** PI: Kashiwagi, NIST PS: Olson, GRC #### **Experiment Summary** - Study 2 and 3 dimensional radiant ignition and transition to flame spread of solid cellulose and PMMA samples under low speed flows. - Ignition time, shape and flame size, flame color, spectral emissions and temperature measurements are made. - Chamber insert provides fuel, temperature point measurement devices and fans for oxidizer flow. CO2 ignition system external to chamber. - Operating pressure is 1 atm with O2/N2 mixtures provided by the FOMA. O2 concentration 21%. - Diagnostics provided by PI: High speed color sample edge view and IRSA system - Diagnostics provided by CIR: - Two color images: one edge view and one surface view. - IR images of fuel surface temperature - Chemical composition of the burned gas samples - Acceleration environment range 10-4 g/go provided by ARIS **Diagnostics Layout in CIR** **CIR/TIGER-3D Chamber Insert Apparatus** ### Summary of CIR/TIGER 3-D Compliance With TIGER 3-D SRD/Derived Requirements | System | Key Requirement | CIR H/W | TIGER 3D H/W | Other | Compliance | |---|--|-------------------------------|--|-----------------|--| | Test Chamber | Insert size: 40 cm long x 40 cm of initial press 1 atm.05 atm | ia Chamber
Test chamber | insert | | comply
" | | Test Gas Conditions | O2 mole fract acc .3%
O2 mole fraction range:20.9%,res
N2 | FOMA system FOMA gas bottle | initial bottle gas mixture
s initial bottle gas mixture | | п | | Flow duct conditions | 24 cm long x 14cm x 14cm
0-15 cm/sec flow through | | Recirculation fan in chambei
O2 sensor | | May Comply O2 bleed in method testing on-going | | Acceleration
Environment | need levels 10-4 g/go
need freg mesurement 0-10 Hz | | | ARIS
SAMS FF | comply | | Minimum # Test Pts
Test duration | 30 pts
~ 20 minutes | CIR ops | Tiger 3D ops | Crewtime/down | K " CIR FOMA supply flow time | | Laser Ignition in 2-d & 3 -d tests | Up to 1600 Watts | | CO2 laser, turning mirror focusing optics & window | | May comply Using 120V supply + Water Cooling | | Color camera surface view | 30 fps
10 x 10 cm fov
resolution: 500 um | Color Camera
" | | | comply
" | | Color camera
edge view | 30 fps
4x 3 cm fov
resolution: 250 um | | Color Camera
(IRSA) | | 11
11 | | Color camera (edge vie | w) 200-500 fps
4x 3 cm fov
resolution: 250 um | | high speed color camera | à | comply " " | | IR Imaging camera for surface temperatu | 60 fps
re 8 x10 cm fov
resolution: 500 um
temperature range: 400 -114060K | Mid-IR pkge
& windows
" | | | 11
11
11 | Summary: TIGER -3D requirements will be met with CIR/FCF resources. ### Combustion Experiments – Utilization of FCF Provided Hardware | EXP
HARDWARE | c1 | | c3 | c4 | c 5 | C6 | с7 | C8 | c9 | c10 | c11 | %
Utilization | |------------------|----|---|----|-----------|------------|----|----|-----------|-----------|-----|-----|------------------| | HFR/HR | | | | | | 1 | | 1 | | | | 18% | | HiBMS | | | | | | | 1 | 1 | | | | 18% | | Color Camera | 1 | 1 | | 1 | 1 | | 1 | | | 1 | 1 | 64% | | LLL-UV | 1 | 1 | | | | 1 | 1 | 1 | 1 | 1 | | 64% | | LLL-IR | | 1 | | | | | | | 1 | 1 | | 27% | | Mid-IR | | | | 1 | | | | | | 1 | 1 | 27% | | Illumination | | | | | 1 | 1 | 1 | 1 | | | | 36% | | Common IPSU 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 91% | | Common IPSU 2 | 1 | 1 | | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 82% | | Common IPSU 3 | | 1 | | 1 | | 1 | | | | 1 | 1 | 45% | | IPP | | | | | | 1 | 1 | 1 | | | | 27% | | FCU | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | GC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | SAMS Head | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | Vent/Vacuum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | Water | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | GN2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | ATCU | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | ARIS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | Fire Suppression | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | ### Combustion Experiments – Utilization of PI Provided Hardware | EXPERIMENT
HARDWARE | c1 | c2 | с3 | c4 | с5 | c6 | с7 | C8 | c9 | c10 | c11 | %
Utilization | |------------------------|----|----|----|-----------|----|-----------|----|-----------|-----------|-----|-----|------------------| | Color Camera #1 | | | | | | 1 | | 1 | | | | 18% | | Color Camera #2 | | | | 1 | | | | | | | | 9% | | High Speed Color | | | | | | | | | | | 1 | 9% | | LLL-IR | | 1 | | | | | | | | | | 9% | | Illumination | | | | | | | | 1 | | | | 9% | | Common IPSU 4 | | | | | | | | | | 1 | | 9% | | Long IR Camera | | | 1 | | | | | | | | | 9% | | Radiometer (CIA) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | Radiant Heater #1 | | | | 1 | | | | | | | | 9% | | Radiant Heater #2 | | | | | | | | | | | 1 | 9% | | Chamber Insert Assy | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | ### Summary Compliance Summary for Combustion Basis Experiments and Real Experiments | BASIS EXPERIMENTS | Ç | 62 | £ | c4 | c5 | c6 | с7 | c8 | 69 | c10 | c11 | |-------------------|-----------------|-----------------|-------------------|----|------------------|----|-------------------|-----------|----|-----|-----| | Comply | | | | | | | | | | | | | Hardware | | | | | | | | | | | | | Bench Volume | | | | | | | | | | | | | Data [GB] | 243.3 | 144 | 4.89 | | 6.7 | | 2.96 | | | | | | Mass (Base) | 943 kg | 995 kg | 966 kg | | 946 kg | | 1001 kg | | | | | | Power (Peak/Ave) | 1.5 kW/
744W | 2.1 kW/
742W | 2.1 kW/
742 kW | | 1.6 kW /
840W | | 1.7 kW /
710 W | | | | | | Energy [kW-h] | 286 | 156 | 33.5 | | 77 | | 90 | | | | | | REAL
EXPERIMENTS | | FIST | DCE-II | SEDC | Cool Flames | SIBAL | TIGER-3D | |---------------------|---|-------------------|----------------|------------------|-----------------|------------------|-----------------| | Accommodate | · | | | | | | | | Hardware | | | | | | | | | Bench Volume | | | | | | | | | Data [GB] | | 481 | 1355 | 153 | 3517 | 687 | 2228.5 | | Mass (Base) | | 977 kg | 1021 kg | 1021 kg | 949 kg | 958 kg | 984 kg | | Power (Peak/Ave) | | 2.4 kW/
667 kW | 2.1KW/
698W | 2.1 kW/
819 W | 1.6 kW/
569W | 2.4 kW/
692 W | 3.7 kW/
670W | | Energy [kW-h] | | 242 | 477 | 161 | 1008 | 408 | 727 |